If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-3x^2+48x-180=0
a = -3; b = 48; c = -180;
Δ = b2-4ac
Δ = 482-4·(-3)·(-180)
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(48)-12}{2*-3}=\frac{-60}{-6} =+10 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(48)+12}{2*-3}=\frac{-36}{-6} =+6 $
| -3x^2+72x-420=0 | | 2^4x-1=x+7 | | 100=80+4f | | 5x+5-3x-2=54 | | 10x+1=5x+4 | | (9-7x)•3=-(11x+2)-11 | | 21a+15=0 | | 5(n-78)=35 | | (3x+1=2x+4)+90=180 | | t/10-25=-24 | | 4(d+3)=56 | | 3x+x-4x=7 | | s/3-(-57)=67 | | y+26=-15 | | 16v+5=73-v | | 2d=4=10+2.5d | | x-39=157 | | X=150y | | 7x+15=2x+35 | | y/9-(-29)=33 | | 6=2(5+8e) | | 8z+3=91 | | 17.99+86c=262.23 | | 3(2x+9)=13-x | | m+22/9=7 | | c/6-47=-40 | | 9(b+2)=8-(-9b-10) | | -2(x+8)=-20 | | -1÷-4d+2=6 | | q+22/10=1 | | 8(y-83)=48 | | 19/10=x/12 |